Bruce A. Measure Chair Montana

Rhonda Whiting Montana

W. Bill Booth Idaho

James A. Yost Idaho

Joan M. Dukes Vice-Chair Oregon

Bill Bradbury Oregon

Tom Karier Washington

Phil Rockefeller Washington

January 3, 2012

MEMORANDUM

TO: Fish and Wildlife Committee members

FROM: Jim Ruff – Manager, Mainstem Passage and River Operations

SUBJECT: Overview of American shad in the Columbia River and a related USGS project

Background

At the January 10, 2012, Fish and Wildlife Committee meeting, Mike Parsley and Matt Mesa from the U.S. Geological Survey's (USGS) Western Fisheries Research Center-Columbia River Research laboratory in Cook, WA will present an overview of Fish and Wildlife Program project #2007-275-00, American shad in the Columbia River, as well as a related USGS project (project #2008-719-00), Research Non-Indigenous Actions. This briefing by USGS scientists will report the findings from these studies, which contribute to a better understanding of American shad in the Columbia River, their impact on salmon restoration efforts, and provide direction for additional research.

American shad (*Alosa sapidissima*) are a highly successful introduced species in the Columbia River basin, with some adults migrating upstream as far as Rock Island Dam on the Columbia River and above Lower Granite Dam on the Snake River. Based on Corps of Engineers adult fish count records, the five-year (2006-2010) average adult shad count over Bonneville Dam is 2.22 million fish. On average, over 7900 shad passed above Lower Granite Dam on the Snake River, and about 750 shad have migrated above Priest Rapids Dam on the Columbia River during the same five year period. American shad adults, perhaps up to 20 million, enter the lower Columbia River during the April through June period for spawning. Juvenile shad out-migrate in vast numbers primarily from July through early winter, with evidence suggesting many juveniles overwinter in the estuary.

Hydroelectric development of the lower Columbia River inundated natural barriers to adult American shad migration and modifications to fish ladders at the dams in the 1970s to improve adult salmon passage also allowed American shad numbers to increase dramatically. Non-native fishes frequently impact native fish at multiple scales from population-level impacts to modifying food webs and altering ecosystem function. Non-native species typically compete with native species for food and space, facilitate the spread and virulence of diseases, and alter habitat. The abundance of American shad in the Columbia River has raised concerns about their impact on native salmonids and restoration efforts.

Project 2007-275-00: Impact of American shad in the Columbia River http://www.cbfish.org/Project.mvc/Display/2007-275-00

The objectives of Fish and Wildlife Program project 2007-275-00 (Impact of American shad in the Columbia River) funded by Bonneville from 2007-2010, were to: a) collect data on the diet of juvenile and adult American shad; b) develop a bioenergetics model for American shad to provide decision support; and c) to conduct empirical investigations to gain insight into several areas of study where American shad may have impact in the Columbia River. The project collected and reported detailed data on the diet of American shad, investigated the role of American shad as vectors of disease, analyzed the growth of age-0 American shad and developed a bioenergetics model for the species. In addition, project personnel collaborated extensively with other researchers to investigate important and sometimes unique aspects of American shad life history.

Project 2008-719-00: Research Non-Indigenous Actions http://www.cbfish.org/Project.mvc/Display/2008-719-00

Ongoing Fish and Wildlife Program project 2008-719-00 (Research Non-Indigenous Actions) is investigating the food habits of non-native predators, including smallmouth bass, catfish and walleye, in the lower Columbia River during the late summer and fall to assess the role of juvenile American shad in their diets and any impacts on their health and condition. This project will provide an understanding of the general health and condition of non-native predators prior to over-wintering and the role their diet in the fall plays in determining their condition. Such information will be useful for validating previous bioenergetics analyses and for conducting new analyses.

w:\jr\ww\2012\1-10-12 usgs american shad project briefing memo.docx

Impact of American Shad in the Columbia River

Project 2007-275-00

Michael J. Parsley

Western Fisheries Research Center Columbia River Research Laboratory

U.S. Dept of Interior U.S. Geological Survey

Purpose

Better understand the role of American shad in salmon restoration efforts

Today's Presentation

- History of Project 2007-275-00
- Goal and Objectives
- Results
- Future Directions

History of Project 2007-275-00

- 2002 USGS submitted proposal
- 2004 Innovative Project Proposal
- 2005 presentation to NPCC
- 2006 Revised proposal
- 2006 Council recommendation for funding with caveats

2006 Proposal Review Results

Sponsor: Columbia River Research Laboratory Budgets: FY07: \$278,736 | FY08: \$360,313 | FY09: \$365,160

ISRP final recommendation: Fundable

Final Council recommendation (November 2006) Funding category: Expense Recommended budgets: FY07: \$133,334 FY08: \$133,333 FY09: \$133,333 Comment: Need to be complete in 3 years.

2007-275-00 Objectives

- 1) Shad as potential competitors of juvenile salmon for forage
- 2) The role that shad play as prey for juvenile salmon and as prey supporting growth of native and introduced predators of juvenile salmon
- 3) The role that shad may play as vectors of disease that pose a potential threat to the restoration of salmon populations

History of Project 2007-275-00

- 2002 USGS submitted proposal
- 2004 Innovative Project Proposal
- 2005 presentation to NPCC
- 2006 Revised proposal
- 2007 Council recommendation for funding with caveats
- 2009 Food webs presentation to NPCC
- 2010 Proposal to expand denied, project ended; final report delivered May 2011

ISRP 2011 Retrospective Report

Objectives for 2007-275-00

- 1) Estimate abundance of juvenile shad in reservoirs
- 2) Corroborate existing shad bioenergetics model
- 3) Characterize zooplankton in mainstem reservoirs
- 4) Characterize fitness of subyearling Chinook salmon when shad are abundant
- 5) Characterize food habits of subyearling Chinook in lower Columbia River reservoirs when shad are abundant

American Shad Counted at Bonneville Dam (1938-2011)

chironomids, etc.

Accomplishments

- Broadened geographic description of juvenile American shad diet
- Found that some adults are feeding during freshwater migrations
- Growth of juvenile shad
- Refined shad bioenergetics model

Presented in final report to BPA

Shad Diets

Shad Diets

Shad Growth

Bioenergetics Models

Zooplankton consumption by juvenile shad

Bioenergetics Models

≪USGS

Larval shad consumption by juvenile Chinook salmon

Interesting Findings

Freshwater-type juvenile shad exist

Otolith from a 159 mm TL freshwater-type juvenile American shad

Why should we care?

- Juvenile shad are available as forage throughout the year
- Juvenile shad are consuming food in freshwater throughout the year

Timing of American Shad in Freshwater

 \bigcirc

Interesting Findings

- Freshwater-type juvenile shad exist
- Thiaminase activity is higher than that in Great Lakes forage fish
- Why should we care?
- Affects reproductive success in Great Lakes salmon

Thiaminase Activity in Shad

≥USGS

Thiaminase Activity in Shad

≥USGS

Interesting Findings

- Freshwater-type juvenile shad exist
- Thiaminase activity is higher than that in Great Lakes forage fish
- Prevalence of *lchthyophonus* infection was high

Ichthyophonus is in many fishes

Anadyr'

Chukchi

Sea

and a

Inuvi

Watson Lake

Prince George

Seattle

Salt La

NE

 \mathcal{O}

Biol Invasions DOI 10.1007/s10530-010-9760-5

ORIGINAL PAPER

Amplification and transport of an endemic fish disease by an introduced species

Paul K. Hershberger · Bjorn K. van der Leeuw · Jacob L. Gregg · Courtney A. Grady · Kenneth M. Lujan · Susan K. Gutenberger · Maureen K. Purcell · James C. Woodson · James R. Winton · Michael J. Parsley

Received: 20 November 2009 / Accepted: 1 April 2010 © US Government 2010

Abstract The introduction of American shad from the Atlantic to the Pacific coast of North America in the late 1800's and the subsequent population expansion in the 1980's resulted in the amplification of *Ichthyophonus* sp., a Mesomycetozoean parasite of wild marine fishes. Sequence analysis of the ribosomal DNA gene complex (small subunit and internal transcribed spacer regions) and *Ichthyophonus* epidemiological characteristics indicate a low probability that *Ichthyophonus* was co-introduced with American shad from the Atlantic; rather, *Ichthyophonus* was likely endemic to marine areas of the Pacific region and amplified by the expanding population of a highly susceptible host species. The migratory life history of shad resulted in

P. K. Hershberger (⊡) · J. L. Gregg · C. A. Grady US Geological Survey, Western Fisheries Research Center (WFRC), Martowstone Marine Field Station, 616 Marrowstone Point Road, Nozilland, WA 98358, USA e-mail: phetshberger@usgs.gov the transport of amplified Ichthyophonus from its endemic region in the NE Pacific to the Columbia River watershed. An Ichthyophonus epizootic occurred among American shad in the Columbia River during 2007, when infection prevalence was 72%, and 57% of the infections were scored as moderate or heavy intensities. The epizootic occurred near the record peak of shad biomass in the Columbia River, and corresponded to an influx of 1,595 mt of infected shad tissues into the Columbia River. A high potential for parasite spillback and the establishment of a freshwater Ichthyophonus life cycle in the Columbia River results from currently elevated infection pressures, broad host range, plasticity in Ichthyophonus life history stages, and precedents for establishment of the parasite in other freshwater systems. The results raise questions regarding the risk for sympatric salmonids and the role of Ichthyophonus as a population-limiting factor affecting American shad in the Columbia River.

≥USGS

Shad as vectors of disease

Ichthyophonus

Shad as vectors of disease

Ichthyophonus

Ichthyophonus in Shad

What next?

Understanding the influence of predation by introduced fishes on juvenile salmonids in the Columbia River Basin: closing some knowledge gaps

> Matthew Mesa and Brien Rose U. S. Geological Survey Columbia River Research Laboratory &

Thomas Rien and Christine Mallette Oregon Department of Fish and Wildlife Ocean Salmon and Columbia River Programs

Goal & objectives

Provide a greater understanding of the predatory impact of non-native piscivores on juvenile salmonids in the CRB

Objective 1: Document the food habits of smallmouth bass, walleye, and channel catfish in three reservoirs of the lower Columbia River during the late summer and fall.

Objective 2: Evaluate the physiological condition of smallmouth bass, walleye, and channel catfish during the late summer and fall in three reservoirs of the lower Columbia River.

All with a focus on American shad

2010 collections (9/27-11/9)

30 walleye

32 channel catfish

SMB diet

% biomass

- Crawfish (50%)
- American shad (12%)
- Cottids (8%)

Most common prey fish

- American shad
- NPM
- Cottids

Walleye diet

% biomass

- Peamouth (44%)
- American shad (42%)
- NPM (14%)

Most common prey fish

- American shad
- Peamouth
- NPM

Channel catfish diet

% biomass

- Crawfish (37%)
- Trichopterans (13%)
- Vegetation (12%)
- Amphipods (7%)
- Mysid shrimp (4%)

No shad

2011 (Aug to mid-Nov)

- First full year (high water)
- Proximate analysis on 120 fish
- Collected diet info
 - 1,500 smallmouth bass
 - 150 walleye
 - 250 channel catfish
- Results forthcoming

The future

- Continued diet & physiology studies
- Telemetry for movements & distribution (?)

ISAB Food Web Report Recommends:

- Be Proactive on Non-native Species
- Quantify Food Webs and Ecological Networks
- Model Physical Controls on Structure and Processes
- Survey Base of the Food Web

- **Be Proactive on Non-native Species**
- Develop fundamental understanding of the implications of novel food webs and the characteristics that will continue to support important ecological functions.

- Quantifying Food Webs and Ecological Networks
- Gather requisite food web data
- Develop systemwide food web model
- Develop modeling and network tools coupling land-water systems

- Physical Controls on Structure and Processes
- Use models to produce a dynamic physical map of the "state of the system" to predict response to perturbations

Base of the Food Web

- Mount major systematic surveys of the lower layers of aquatic and riparian food webs
- Identify pathways
- Determine role of temperature & flow

What next?

- Improve estimates of total zooplankton consumption by shad
 - Abundance of juvenile shad in reservoirs
 - Characterize zooplankton in reservoirs
 - Further refine shad bioenergetics model

