Bill Bradbury Chair Oregon

Henry Lorenzen Oregon

W. Bill Booth Idaho

James A. Yost Idaho

Jennifer Anders Vice Chair Montana

> Pat Smith Montana

Tom Karier Washington

Phil Rockefeller Washington

July 2, 2013

MEMORANDUM

- **TO:** Council Members
- **FROM:** Charlie Black

SUBJECT: Briefing on Puget Sound Energy's Integrated Resource Plan

On May 31, 2013, Puget Sound Energy (PSE) filed its latest Integrated Resource Plan (IRP) with the Washington Utilities and Transportation Commission (WUTC). Under WUTC regulations, PSE updates its IRP every two years. The IRP forecasts PSE retail electric customers' requirement 20 years into the future and identifies resource options that are most likely to meet those needs at the lowest cost and risk. PSE prepares its IRPs with active participation by a broad range of interested parties.

At the Council meeting in Seattle on July 10, 2013, Philip Popoff, PSE's Manager, Integrated Resource Planning will provide a briefing on his utility's 2013 IRP.

PSE's 2013 IRP Overview NWPCC

Phillip Popoff Manager, Integrated Resource Planning July 10, 2013 **PSE Overview**

2013 IRP Key Findings

Analysis and Scenarios Considered

Next Steps

Electric

- Customers: 1.1 + Million
- Revenue: \$2+ Billion
- Sales: 24 Mil MWh

Gas

- Customers: 760 ,000
- Revenue: \$1.2+ Billion
- Sales: 108,000 MDth

Combined electric and natural gas service

Electric service

Natural gas service

PSE's Current Resource Stack in MW

Wind 823 MW

Nat Gas Base Load & Peaker 1868 MW

Coal 677 MW

Long-Term Contracts 800 MW

Shorter-Term Import Capability 1400 MW

Great Regional Map:

http://www.nwcouncil.org/maps/power/Default.asp

- Continued Reliance on Market for Peak Capacity
- Shorter Term—Looks Reliable
- Longer-Term—Concerns
- Challenges for Existing Coal-Fired Generation
- A Number of Issues for Coal Generally in U.S.
- Focused on Understanding Factors that Could Affect Economic Viability of Colstrip
- Big Picture: No Major Near-Term Investment Decisions to Make
 at Colstrip
- Infrastructure Challenges
- Electric IRP Calls for Gas Storage
- As Regional Capacity Tightens, Need to Plan Further Out to Facilitate Infrastructure

Winter Peak Capacity Need

Annual Energy Position

Renewable "Energy" Need

Resource Plan - Cumulative Capacity Additions

	2017	2023	2027	2033
Demand-Side Resources (MW)	327	800	887	1,007
Wind (MW)	0	300	500	600
Peakers (CT in MW)	221	442	1,327	2,212
Transmission Renewals (MW)	1,141	1,407	1,407	1,567
Gas Storage (MDth/day Gas)	100	100	100	150

WAC 480-100-238 Integrated resource planning.

(1)Purpose. Each electric utility... has the responsibility to meet its system demand with a least cost mix of energy supply resources and conservation.

"Least Cost": "Lowest Reasonable Cost" Includes Consideration of Risks

Risk Focus: What Factors Can Affect The Least Cost Mix?

Stakeholders

Analyzing Uncertainty

Deterministic Analysis: Scenarios/Sensitivities

- Factors that Might Create Different Long-Term Market Equilibriums and/or Specific Policy Analysis
- Examples: Gas Price Trends, PTC Extension, Load Growth

Stochastic Analysis: All Futures Bumpy!

- Live in Series of Short-Runs...Not Long-Run Equilibriums
- Stochastic Variables in Portfolio Analysis: Gas Prices, Power Prices, Load (weather), Wind, Hydro, CO₂ Price (Cap & Trade Only)

Why Not One, Grand Stochastic Analysis?

- Too Complicated to Intuit
- Difficult to Discern What is Important
- Hard to Explain What is Important
- Use to Learn: Inform Decisions

2013 IRP: Scenarios/Sensitivities/Cases

Market Scenarios

- Base: Mid Growth, Mid Gas Price
- Base + Low Gas
- Base + Very Low Gas Price
- Base + Very High Gas Price
- Base + Low CO₂ Cost
- Base + High CO₂ Price
- Base + Very High CO₂ Cost
- Low: Low Growth, Low Gas Price
- High: High Growth, High Gas Price
- High + High CO₂ Price

Portfolio Sensitivites

- Peaker Type CT vs Recip
- CT With and Without Oil Back-up
- Location: East/West Cascades
- DSR Acquisition /Ramp Rates
- Colstrip Least Cost Replacement
- Replace Colstrip with MT Wind
- RPS + 300MW Wind

Colstrip Environmental Compliance Cases

- Case 1–Low Cost: Regional Haze Less Costly Technology Solution
- Case 2–Mid Cost: Regional Haze Realistic Estimate of EPA Technologies
- Case 3–High Cost: Case 2 + CCR Hazardous w/Offsite Disposal @ \$8/ton
- Case 4—Very High Cost: Case 2 + CCR w/Offsite Disposal at \$24/ton

Henry Hub Gas Price Forecasts

CO2 Cost/Price Assumptions: Deterministic

Two Ways of "Internalizing" Externalities

Reflected in Economic Dispatch: Tax/Cap & Trade

Cost = F(Fixed Costs, Variable Costs (gas prices, CO₂ prices, etc.))

- CO₂ cost in portfolio costs—Part of Economic Dispatch
- Appropriate for CO₂ Tax or Cap & Trade Price
- Key Points:
 - Cost of CO₂ Properly Reflected in Market Price
 - CO₂ Prices Will Affect Quantity via Economic Dispatch AND Resource Portfolios

External to Economic Dispatch: As Externality

- $Cost = F(FC + VC) + (Cost of CO_2 * Tons)$
- CO₂ cost Incorporated Outside Economic Dispatch
- Appropriate for Analyzing CO₂ as a Societal Cost
- Key Points:
 - Cost of CO₂ Will Properly <u>Not</u> be Reflect in Market Price
 - CO₂ Costs Affect Quantity Only via Resource Portfolios

Annual Average Mid-C Power Price (Nominal \$/MWh)

Nameplate Capacity (MW) for Portfolio Additions by 2023

		0 1,000	2,000	3,000	4,000	5,000	
Case 1, 2023	Base	1/07	657 442 300	800			
	Low(Load & Gas Price)	1407	657 200 798				
	High(Load & Gas Price)	1407	657 1106	400	798	🔲 🗖 Tx Renewal	
	Base + Low CO2	1407	657 442 300	800		Colstrip	
	Base + High CO2	1407	359 663 300	812			
	Base + Very High CO2	1407	1131	800	761		
	High(Load & Gas Price) + High CO2	1407	657 1106	400	798	Peaker	
	Very Low Gas	1407	359 885 3	00 491		🗖 Wind	
	Very High Gas	1407	657 221 300	738		DSR	
	Low(Gas & Power Price) + Base Load	1407	657 221 300	738			
Case 2, 2023	Base	1407	657 442 300	800			
	Low(Load & Gas Price)	1407	359 221 200 761				
	High(Load & Gas Price)	1407	657 1106	400	798		
	Base + Low CO2	1407	657 442 300	800			
	Base + High CO2	1407	359 663 300	812			
	Base + Very High CO2	1407	1131	800	761		
	High(Load & Gas Price) + High CO2	1407	657 1106	400	798		
_	Very Low Gas	1407	1106 300	529			
	Very High Gas	1407	657 221 300	738			
-	Low(Gas & Power Price) + Base Load	1407	657 221 300	738			
	Base	1407	657 442 300	800			
Case 3, 2023	Low(Load & Gas Price)	1407	359 221 200 761				
	High(Load & Gas Price)	1407	657 1106	400	798		
	Base + Low CO2	1407	359 663 300	812			
	Base + High CO2	1407	359 663 300	812			
	Base + Very High CO2	1407	1131	800	761		
	High(Load & Gas Price) + High CO2	1407	359 1327	400	829		
	Very Low Gas	1407	1106 300	529			
	Very High Gas	1407	657 221 300	738			
	Low(Gas & Power Price) + Base Load	1407	359 663 300	749			
Cas	e 4, 2023 Base	1407	359 663 300	812			

Significant Range of Cost Uncertainty

PUGET

SOUND

PSE

CO₂ Emissions Trending Up

20

Electric Action Plan

- Pursue Cost Effective Demand-Side Resources
- Develop Strategy to Address Reliance on Market for Capacity in the Intermediate to Long-Term
 Update to IRP in 4th Quarter 2013
- Pursue Prudent Gas Storage Acquisitions for Generation
- Revise Stakeholder Process to Clarify Roles and Expectations & Provide Greater Transparency

Concerns About Long-Term Reliance on Market for Capacity

Challenges for Existing Coal-Fired Generation

Infrastructure Challenges

Thank You!

Phillip Popoff Manager, Integrated Resource Planning phillip.popoff@pse.com