Salmon distributions and marine heat waves: potential changes to survival and distributions

Laurie Weitkamp NOAA Fisheries Northwest Fisheries Science Center Newport, OR Laurie.Weitkamp@noaa.gov

Today's talk

- 1. Species-specific ocean distributions affect salmon's exposure to recent marine heat waves
- 2. Observed distributional changes in salmon
 - Examples that salmon do (or don't) change distributions

Recent NE Pacific marine heat waves

Sea surface temperature (SST) anomalies in September

https://www.integratedecosystemassessment.noaa.gov/regions/california-current/cc-projects-blobtracker

2023: Another big heat wave and El Niño

2023

ber

Catch by country/state shows diverse trends (numbers of fish in 1,000s)

1. Species-specific ocean distributions affect salmon's exposure to recent marine heat waves

A. A.

First summer in the ocean: 3 patterns for Columbia River salmon

Pattern 1: Rapid northwards movement on shelf to Gulf of Alaska Which: Spring Chinook, chum, sockeye, some coho

Ocean

Initial ocean migrations of Columbia River salmon in recent Julys

(shading = sea surface temperature anomalies)

July 2015

July 2016

July 2017

0.5

degrees C

0.75

1

1.25 1.5 1.75 2.25 4

July 2019

-2.25 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0.25

Columbia River high seas distributions

Adults returning to the Columbia: 3 general migration patterns

Pattern 1: Southwards movement along shelf

Which: Fall Chinook, Chum (?), sockeye (?)

Pattern 2: Northwards along California & Oregon Coasts

Which: Coho

Pattern 3: Move rapidly onshore (or unknown)

Which: Steelhead, Spring Chinook

Expect that recent regional steelhead declines due to rapid movement offshore into worst of heat waves

Surprisingly, Fraser and Columbia sockeye trends have diverged

Fraser abundance

2. Observed distributional changes in salmon

Examples

- 1. Salmon in the Arctic
- 2. Juvenile salmon in Chukchi Sea
- 3. Expected future Chinook salmon distributions

Fisheries and Oceans

Pêches et Océans

Canada

Canada

*

Community-led monitoring of Arctic fish biodiversity change

www.facebook.com/arcticsalmon

www.arcticsalmon.ca

Increasing number of salmon observed across Arctic

2. Juvenile pink and chum salmon expanding northwards in Bering and Chukchi Seas as ice retreats

3. Expected fall Chinook distributions in a warming ocean

(Shelton et al. 2021)

Distributions of focal stocks only slightly shifted northwards in future

Summary and conclusions

- Expect recent species- or stock-specific changes in salmon abundance are due to ocean distributions relative to marine heat waves
 - Buffer provided by upwelling for species remaining near shore
 - Steelhead move straight offshore and into worst of heat waves
- Salmon expansion into Chukchi Sea (pink & chum juveniles) or Arctic (all species) indicates flexibility for some individuals
- Modeled small changes in fall Chinook distributions in future suggests reliance on "ancestral feeding routes" that may be slow to change.

Forecast SST anomalies for this summer show lots of warm water across N Pacific but La Niña brewing at equator

CFSv2 forecast seasonal SST anomalies

May-June-July

July-Aug-Sep

Sep-Oct-Nov

https://www.cpc.ncep.noaa.gov/products/people/wwang/cfsv2fcst/

0.5

Upwelling keeps heat waves offshore in N California Current in spring and early summer (monthly SST anomalies)

June

August

September

2022

2023

2021

